Molecular Hydrogen For Health: Articles and Reviews

There are well over 1,000 peer-reviewed studies and articles on over 170 human and animal disease models demonstrating the wide-ranging benefits of hydrogen gas. The comprehensive studies and review articles below demonstrate some of the promising qualities and applications of hydrogen for nearly every aspect of human life.

There are well over 1,000 peer-reviewed studies and articles on over 170 human and animal disease models demonstrating the wide-ranging benefits of hydrogen gas. The comprehensive studies and review articles below demonstrate some of the promising qualities and applications of hydrogen for nearly every aspect of human life.

Recent progress toward hydrogen medicine: Potential of molecular hydrogen for preventive and therapeutic applications

“H2 prevented the decline of the mitochondrial membrane potential. This suggested that H2 protected mitochondria from OH. Along with this protective effect, H2 also prevented a decrease in the cellular level of ATP synthesized in mitochondria. The fact that H2 protected mitochondria and nuclear DNA provided evidence that H2 penetrated most membranes and diffused into organelles.”

Ohta, S. (2011). Recent progress toward hydrogen medicine: Potential of molecular hydrogen for preventive and therapeutic applications. Current Pharmaceutical Design, 17(22), 2241-2252. doi: 10.2174/138161211797052664

 

The evolution of molecular hydrogen: A noteworthy potential therapy with clinical significance

“Hydrogen is qualified to cross the blood brain barrier, to enter the mitochondria, and even has the ability to translocate to the nucleus under certain conditions. Once in these ideal locations of the cell, previous studies have shown that hydrogen exerts antioxidant, anti-apoptotic, anti-inflammatory, and cytoprotective properties that are beneficial to the cell.”

Dixon, B. J., Tang, J., & Zhang, J. H. (2013). The evolution of molecular hydrogen: A noteworthy potential therapy with clinical significance. Medical Gas Research, 3(10), 1-12. doi: 10.1186/2045-9912-3-10

 

 

Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles

“A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases.”

Ichihara, M., Sobue, S., Ito, M., Ito, M., Hirayama, M., & Ohno, K. (2015). Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Medical Gas Research, 5(12), 1-21. doi: 10.1186/s13618-015-0035-1

 

 

A review of hydrogen as a new medical therapy

“In the past few years many initial and subsequent clinical studies have demonstrated that hydrogen can act as an important physiological regulatory factor to cells and organs on the antioxidant, anti-inflammatory, anti-apoptotic and other protective effects. So far several delivery methods applied in these studies have proved to be available and convenient, including inhalation, drinking hydrogen-dissolved water and injection with hydrogen-saturated saline.”

Zhang, J., Liu, C., Zhou, L., Qu, K., Wang, R., Tai, M., . . . Wang, Z. (2012). A Review of hydrogen as a new medical therapy. Hepatogastroenterology, 59(116), 1026-1032. doi: 10.5754/hge11883

 

Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine

“The numerous publications on its biological and medical benefits revealed that H2 reduces oxidative stress not only by direct reactions with strong oxidants, but also indirectly by regulating various gene expressions. Moreover, by regulating the gene expressions, H2 functions as an anti-inflammatory and anti-apoptotic, and stimulates energy metabolism. In addition to growing evidence obtained by model animal experiments, extensive clinical examinations were performed or are under investigation. Since most drugs specifically act to their targets, H2 seems to differ from conventional pharmaceutical drugs. Owing to its great efficacy and lack of adverse effects, H2 has promising potential for clinical use against many diseases.”

Ohta, S. (2014). Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacology & Therapeutics, 144(1), 1-11. doi: 10.1016/j.pharmthera.2014.04.006

 

The clinical application of hydrogen as a medical treatment

"In recent years, it has become evident that molecular hydrogen is a particularly effective treatment for various disease models such as ischemia-reperfusion injury; as a result, research on hydrogen has progressed rapidly. Hydrogen has been shown to be effective not only through intake as a gas, but also as a liquid medication taken orally, intravenously, or locally. Hydrogenʼs effectiveness is thus multifaceted. Herein we review the recent research on hydrogen-rich water, and we examine the possibilities for its clinical application. Now that hydrogen is in the limelight as a gaseous signaling molecule due to its potential ability to inhibit oxidative stress signaling, new research developments are highly anticipated."

http://www.lib.okayama-u.ac.jp/www/acta/pdf/70_5_331.pdf

 

Recent progress toward hydrogen medicine: Potential of molecular hydrogen for preventive and therapeutic applications

“H2 prevented the decline of the mitochondrial membrane potential. This suggested that H2 protected mitochondria from OH. Along with this protective effect, H2 also prevented a decrease in the cellular level of ATP synthesized in mitochondria. The fact that H2 protected mitochondria and nuclear DNA provided evidence that H2 penetrated most membranes and diffused into organelles.”

Ohta, S. (2011). Recent progress toward hydrogen medicine: Potential of molecular hydrogen for preventive and therapeutic applications. Current Pharmaceutical Design, 17(22), 2241-2252. doi: 10.2174/138161211797052664

 

The evolution of molecular hydrogen: A noteworthy potential therapy with clinical significance

“Hydrogen is qualified to cross the blood brain barrier, to enter the mitochondria, and even has the ability to translocate to the nucleus under certain conditions. Once in these ideal locations of the cell, previous studies have shown that hydrogen exerts antioxidant, anti-apoptotic, anti-inflammatory, and cytoprotective properties that are beneficial to the cell.”

Dixon, B. J., Tang, J., & Zhang, J. H. (2013). The evolution of molecular hydrogen: A noteworthy potential therapy with clinical significance. Medical Gas Research, 3(10), 1-12. doi: 10.1186/2045-9912-3-10

 

 

Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles

“A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases.”

Ichihara, M., Sobue, S., Ito, M., Ito, M., Hirayama, M., & Ohno, K. (2015). Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Medical Gas Research, 5(12), 1-21. doi: 10.1186/s13618-015-0035-1

 

 

A review of hydrogen as a new medical therapy

“In the past few years many initial and subsequent clinical studies have demonstrated that hydrogen can act as an important physiological regulatory factor to cells and organs on the antioxidant, anti-inflammatory, anti-apoptotic and other protective effects. So far several delivery methods applied in these studies have proved to be available and convenient, including inhalation, drinking hydrogen-dissolved water and injection with hydrogen-saturated saline.”

Zhang, J., Liu, C., Zhou, L., Qu, K., Wang, R., Tai, M., . . . Wang, Z. (2012). A Review of hydrogen as a new medical therapy. Hepatogastroenterology, 59(116), 1026-1032. doi: 10.5754/hge11883

 

Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine

“The numerous publications on its biological and medical benefits revealed that H2 reduces oxidative stress not only by direct reactions with strong oxidants, but also indirectly by regulating various gene expressions. Moreover, by regulating the gene expressions, H2 functions as an anti-inflammatory and anti-apoptotic, and stimulates energy metabolism. In addition to growing evidence obtained by model animal experiments, extensive clinical examinations were performed or are under investigation. Since most drugs specifically act to their targets, H2 seems to differ from conventional pharmaceutical drugs. Owing to its great efficacy and lack of adverse effects, H2 has promising potential for clinical use against many diseases.”

Ohta, S. (2014). Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacology & Therapeutics, 144(1), 1-11. doi: 10.1016/j.pharmthera.2014.04.006

 

The clinical application of hydrogen as a medical treatment

"In recent years, it has become evident that molecular hydrogen is a particularly effective treatment for various disease models such as ischemia-reperfusion injury; as a result, research on hydrogen has progressed rapidly. Hydrogen has been shown to be effective not only through intake as a gas, but also as a liquid medication taken orally, intravenously, or locally. Hydrogenʼs effectiveness is thus multifaceted. Herein we review the recent research on hydrogen-rich water, and we examine the possibilities for its clinical application. Now that hydrogen is in the limelight as a gaseous signaling molecule due to its potential ability to inhibit oxidative stress signaling, new research developments are highly anticipated."

http://www.lib.okayama-u.ac.jp/www/acta/pdf/70_5_331.pdf